中文 | English
技术支持
选型参考

选择运算放大器没那么简单

作者 : 发表时间 : 2015/5/22 10:02:30


 


选择运放与这些器件的规格一样复杂。通过了解运放的基础知识,了解自己的应用要求,并使用独立工具和在线工具,就可以做出正确的选择。

要 点


◆一只放大器的所有五只管脚都有重要规格。
◆应用通常驱动选择过程。
◆了解数据资料的各个部分,能更好地选择部件。
◆半导体工艺影响着放大器的规格。
◆在线工具与选择指南可以帮助你找到正确的器件。
◆考虑使用专门的放大器。

◆你可能认为选择运放是件再简单不过的事。毕竟,所有运放都只有三个重要管脚:两个输入和一个输出。但是,在设计一款普通运放时,还必须考虑到另外两个电源脚,全部五个管脚组成了令人困惑的规格阵列。事实上,放大器设计与选择可能是最让模拟系统工程师生畏的任务。

 

 

在选择放大器时,必须确定该器件运行的最大电压和最小电压、静态电流、运放要为负载提供的电流,以及它使用的所有其它电流例如,你可能将两个电源脚设 定为用分离电源的双极运行,或者将负电源端接地,作单端运行(图 1)。尽管任何放大器都可以接成双极或单端电路,但通常有一些其它因素会使器件更适合单端工作。另外,输入脚几乎总是包含了输入范围内的接地,或者提供满摆幅输入,此时输入脚可以

工作到电源两个极值上。还有一些事情也使设计复杂化,如运放数据资料一般都表示单端工作的规格,尽管测试工程师有可能修改器件的工作条件,并重新描述规格以反映双极工作状况。

   输出电流是一项重要规格。即使在输出脚低于两个电压线路 0.6V 情况下,满摆幅输出的器件也能提供可用的驱动电流。与双极输出的器件相比,采用 FET 输出的器件摆幅可以更接近两个电压线路。例如,Intersil 的 30mA EL5020在 5 mA 时,可以在两个线路之间 15 mV 的范围内摆动。为保证精确和低失真的性能,还必须了解输出脚阻抗,这个阻抗会随频率而变化。另外,输出脚必须驱动某种电平的容性负载。有些器件要驱动无限制的容性负载,如美国国家半导体公司的 LM8272,而普通的视频放大器在数十个皮法的负载电容时就会振荡。

  Analog Devices 公司的应用工程总监 Dave Kress 认为,放大器选择有五个关键要素(图 2):带宽、电源、一个封装中多只器件的要求、应用和成本。另一方面,德州仪器公司 Burr-Brown 部的线性应用经理 Tim Green 则将这些因素缩减为三点:电压、电流和带宽。

 

 

 

不过,美国国家半导体公司的一名应用工程师 Paul Grohe 更多地考虑放大器的内部。他说:“偏置电流与带宽这两个 B 是关键。一个快速器件会消耗较多电流,而一个低噪声器件也会消耗较多电流。并且,如果你使用一个高的源阻抗,输入偏置电流就是最重要的规格。”

   美国国家半导体公司资深科学家 Bob Pease 指出,如果供应商不能及时提供器件,规格就没什么作用。他还说,噪声经常被忽视,但绝对是个极其关键的参数。他说:“不存在简单的答案,你必须自己作判 断。每种应用都有一到两个主要参数,你必须找出它们。你不可能拥有一切。”

  Tim Regan 是 Linear Technology 的信号调节单元应用经理,他使用缩略词 SNAP(供电电压与电流/交流或直流性能需要/放大器数量/封装)帮助工程师记忆这些重要的折衷关系。Maxim 的运放与比较器商务营销经理 Patrick Long 也提到,封装是一个重要条件。例如,假设器件的目标应用是手机,你会希望用倒装或焊球封装。这些超小型封装可在一个硅片大小的电路板空间上提供高性能的模拟功能。

  理解运放选择范围的一种方法是看数据单的结构。第一页是一个很有价值的工具,它给出了主要特性和目标应用。如果忽略那些营销 术语(如“慢”和“快”),而寻找实际的速度图,就可以快速确定该放大器是否在自己应用的适用范围内。第一页可能说明了制造商用于制作该运放的工艺(见附文1“运算放大器工艺”)。

  在运放数据资料中,紧跟第一页的一般是有关最大绝对额定值的部分。这部分通常包括器件将承受的最高电压和温度。显然,这一部分的重要位置表明这些参数在选择中的重要性,因为它们是绝对的最大值。任何时刻器件都不能超过这些极限值。

   数据资料中还有一些关于直流特性与交流特性及工作电压的表格。表格清楚地表明了在设计者建立表格时,器件可以运行的工作电压。第一页可能称器件能工作在低至 2.7V 电压下,而表格中可能表示器件可以运行在 3V。虽然将一只 3V 器件运行在 2.7V 是可以接受的,但却不能使用 3V 下数据单表格中的规格值。你可以向制造商询问在较低电压下的器件特性,或者必须自己测试。表中的值都是制造商必须满足的契约责任。


数据资料中,表格后面是图表页。虽然这些图表并不表示一种法律责任,但它们很重要。例如,表格中可能表示一个很大的 PSRR(电源抑制比),而图表却显示这个规格会随频率的增加而显著下降。如果一只放大器正用于一个有 1MHz 输出纹波的 1MHz 转换开关,则必须用相应图表对 1MHz 下的 PSRR 作出评估,并且要记住设计者创建图表时是在某个工作电压下,这种电压下可能得到比你的电路更好的结果。同样,表中的电压噪声是基于较高频率上的平坦噪声。对于直流或低频应用,必须查询图表,以确定你电路中频率对应的噪声(图 3)。

 


   还有一种专用放大器是混合放大器,它内部使用分立晶体管或拥有多级放大器,即一种信号用多个放大器,而不是采用多个封装。例如,Cirrus Logic 的 CS3001 系列有 1 万亿(或 300 dB)的开环增益,这是其信号链中有一个以上放大器的确切标志。相位响应表明,这款器件是一种混合放大器,适用于仪器应用。巨大增益意味着低失真。

另一种形式的混合放大器是斩波放大器,或自动调零放大器。这些放大器也叫做自动归零放大器,它有一个不断校正偏移电压的第二个放大器。这种功能适用 于直流仪器中使用的器件,特别是偏移校正可以消除低频噪声。缺点是这些器件速度慢,而它们的斩波频率一般在 100Hz~35kHz范围内,会对输出造成干扰。这个频率远远超出预期的有用频率,要用后面的滤波器级将其过滤掉。一个值得注意的例外是美国国家半导体公司的 LMP2011,它拥有与斩波放大器相应的微伏级偏移,而仍有 3 MHz 的带宽。该器件亦提供比其它斩波放大器更好的瞬态响应与转换速率。

  差分输出放大器提供一个音频信号路径,它不受接地回路或缓冲差分输入 ADC 的影响。差分输出音频放大器工作在千赫兹范围,而 ADC 缓冲则工作在千兆赫兹范围。

   仪表放大器通常是有三个放大器的混合式放大器,这样输入可以工作在大的共模范围内。当你改变一只普通放大器正引脚的电压时,输出电压会跟随输入电压变化,同时输入脚之间的差值使输出端超出该电平。另一方面,仪表放大器有基准脚,它将输出基准设定在所需的电压,一般为地。这一特性使它们能用于测量 Whe

atstone 桥传感器,如压力规,也可以用于测量高侧电流。它的缺点是速度低和成本高。仪表放大器的通常目标用途是直流信号。有些具有5Hz ~ 0.5MHz的带宽(根据增益),如德州仪器公司 Burr-Brown 部的 PGA206。这些器件有数字可编程的增益,并采用 JFET(结型场效应晶体管)输入级,提供低噪声和高速度。

  其它专用放大器已不太流行,但对那些了解如何使用的模拟专家来说,它们仍 然是有用的。互导放大器(如美国国家半导体公司的 LM13700)有可变增益。它们将控制脚上的输入电流乘以放大器输入脚上的电压。数据资料值得一读的原因只是因为它覆盖了繁多应用(参考文献 A)。该公司的 LM3900 Norton 放大器已经过时,但 LM359 仍在生产。这些放大器采用 Norton 的电流定律,它作用于进入电源镜像的一个电流差,与几乎所有其它放大器所采用的输入差分对相反。该器件很少见,但能为分析与理解提供一种有趣的练习(参考文献 B)。On Semiconductor 公司的 MC33304 电源自适应放大器也已过时,但仍令人感兴趣,因为无论何时其输出电流超过用户选择的阈值时,它的静态电流与频率响应都会增加。

参考文献
A. "LM13700—Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers," National Semiconductor, 2007.
B. "LM359 Dual, High Speed, Programmable, Current Mode (Norton) Amplifiers," National Semiconductor, August 2000.